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Abstract

Mandated health insurance coverage for expensive in vitro fertilization (IVF)
treatment varies widely in generosity across the US states. We find that more gener-
ous coverage within the states that mandate any coverage causes a greater incidence
of multiple births, which are costly and can be risky. While more generosity is as-
sociated with fewer embryos transferred, this effect is outweighed by greater overall
utilization of IVF. In addition, more generous coverage is associated with differ-
ences in the composition of patients, where more older women with lower fertility
pursue treatment. This is mirrored by lower rates of child adoption by older women
in those states. Utilization and compositional effects imply that increased access
without regulation might impose additional burdens on the healthcare system.
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1 Introduction

Healthcare spending in the US has risen rapidly, from five percent of GDP in 1960 to

17.9 percent in 2017 (CMMS, 2017). Lifestyle changes and an aging population have

contributed to increased chronic illnesses such as cancer, musculoskeletal conditions, dia-

betes, and heart disease. These conditions have expensive treatment options, raising con-

cerns about access to treatment and its overall costs. Policy interventions that mandate

health insurance coverage for expensive medical treatments can affect patients’ choices

in several ways. More generous coverage can affect existing patients’ utilization behavior

by decreasing the cost of treatment. However, more generous coverage could also expand

access to new patients, further contributing to increases in healthcare costs. This could

be particularly important if more generous coverage changes the composition of patients

seeking treatment such that patients with lower probabilities of success initiate treatment.

Patients’ behavioral responses to the increased accessibility of expensive treatments are

critical to understanding the ramifications of health policy interventions.

Mandated health insurance coverage for in vitro fertilization (IVF) treatment in the

US provides an appealing case study for several reasons. First, the generosity of man-

dated coverage varies widely across states and over time. States range from no coverage,

to coverage of infertility treatments excluding IVF, to covering an unlimited number of

IVF cycles, and mandates vary across other a number of other dimensions, including age

thresholds, coverage of unmarried women, and others (see Table 1). This variation allows

us to identify the effects of coverage generosity on patients’ utilization and outcomes.

Second, patients choose the intensity of their treatment (through the number of trans-

ferred embryos) based on their preferences and the expected costs and benefits. This

choice directly affects both success rates and the likelihood of risky and costly multiple

births. Finally, IVF resembles other medical treatments like those for heart disease or

cancer, which are expensive and have uncertain outcomes (Shapiro and Recht, 2001).

In this paper, we empirically investigate how the generosity of mandated coverage

for IVF treatment affects the overall incidence of multiple births, which are affected

both by individual patient choices regarding the intensity of treatment as well as by the
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number and composition of patients utilizing the treatment. In the absence of data on

the utilization of IVF treatment for all years, we examine multiple births as a proxy for

IVF treatment intensity.1 More generous coverage could have competing effects on the

incidence of multiple births. First, existing patients face less pressure to conceive in each

cycle, so they might choose less intense treatments and transfer fewer embryos (Jain et al.,

2002; Reynolds et al., 2003). This could decrease the incidence of multiple births. Second,

generous mandates could change the number and composition of patients by expanding

access to new patients who might not have pursued treatment in the absence of insurance

coverage. This could lead to an increase in the incidence of multiple births.2 The overall

effect of more generous coverage for IVF treatment on the incidence of multiple births

is, therefore, ambiguous. The increase in the incidence of multiple births from the latter

effects could dominate the decrease from the former, especially if the patients have a

lower probability of success and transfer more embryos per cycle.

We first estimate a Regression Discontinuity Design (RDD) model, exploring age

eligibility cutoffs in three mandate states to show that, in a causal sense, IVF utilization

increases the incidence of multiple births.3 We then use a Generalized Synthetic Control

(GSC) model (Xu, 2017) to estimate the causal effects of IVF coverage generosity on the

incidence of multiple births. We use birth certificate data from the National Center for

Health Statistics Detail Natality File on all births in the US between 1975 and 2014 and

exploit variation in generosity levels of mandated coverage across states and over time.

To shed light on patients’ utilization behavior, we supplement our primary analyses with

fertility clinic data from the Society for Assisted Reproductive Technologies (SART) from

1996 to 2010 to examine the association, in a descriptive sense, between more generous

IVF coverage and the number of initiated IVF cycles, the composition of the pool of

patients, and the number of embryos transferred per cycle. We also use data from the
1See Section 3 for a discussion of the weaknesses of this measure and section 4.2 for Regression

Discontinuity Design (RDD) results that provide suggestive evidence that increases in multiple births
are directly linked to coverage for IVF treatment.

2Bundorf et al. (2007) and Hamilton et al. (2018) refer to these two effects respectively as intensive
and extensive margin effects, but not in the context of differing generosity levels within the set of states
which mandate coverage. Abramowitz (2020) also discusses these intensive and extensive margin effects
for the outcome of maternal mortality.

3As shown in Table 1, Connecticut, Rhode Island, and New Jersey have age restrictions.

2



National Data Archive on Child Abuse and Neglect (NDACAN) from 2000 to 2014 to

examine the association between coverage generosity and child adoptions, which might

be considered a substitute for conceiving through IVF.

Our paper is related to the literature investigating the effects of state infertiilty in-

surance mandates on a variety of outcomes, including utilization of treatment, infant

health outcomes, fertility, age at first birth, maternal mortality, marriage timing, women’s

choice to pursue professional careers, and labor supply over the life cycle (Schmidt, 2005;

Bitler and Schmidt, 2006; Bundorf et al., 2007; Schmidt, 2007; Bitler, 2007; Bitler and

Schmidt, 2012; Abramowitz, 2014; Machado and Sanz-de-Galdeano, 2015; Abramowitz,

2017; Kroeger and La Mattina, 2017; Abramowitz, 2020).4 Most of these studies use

either state-year or state-year-age variation in mandated IVF coverage in Difference-in-

Differences (DD) and Difference-in-Difference-in-Differences (DDD) frameworks, respec-

tively.5

Of these studies, the ones that relate most closely to our work look at multiple birth

rates, utilization of IVF treatment, and the composition of those seeking treatment. On

multiple births, most of the evidence suggests that mandates increase multiple births

(Bundorf et al., 2007; Bitler, 2007; Buckles, 2013).6 Studies that use fertility clinic-

level data generally find that treated patients with health insurance plans covering IVF

treatment transfer fewer embryos than those with no insurance coverage (Jain et al.,

2002; Reynolds et al., 2003; Henne and Bundorf, 2008; Hamilton and McManus, 2012).

In addition, studies find that mandates increase age at birth (Abramowitz, 2014, 2017;

Kroeger and La Mattina, 2017) but do not increase total lifetime fertility (Machado
4A separate set of papers looks at IVF in other countries. Lundborg et al. (2017) uses IVF as an

instrument for childbearing in the Danish context. Gershoni and Low (2021a) and Gershoni and Low
(2021b) study the adoption of free IVF in Israel and find that it leads to later birth and fertility timing,
as well as greater human capital investment and better labor market outcomes for women. Bhalotra
et al. (2022) examines a Swedish policy of single embryo transfers and finds that it reduced the incidence
of multiple births.

5One exception is Machado and Sanz-de-Galdeano (2015), which uses a synthetic control model to
estimate the effects of mandated IVF coverage in the US on the timing of first births and women’s total
fertility rates.

6Buckles (2013) finds a small positive but insignificant effect on overall multiple births, but significant
increases in triplet and higher births. A separate paper by Kulkarni et al. (2013) does not look at
mandates but descriptively tries to analyze how much of the increase in multiple birth rates over time
could be due to IVF.
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and Sanz-de-Galdeano, 2015), which speaks to compositional effects of mandated IVF

coverage.

Most of these papers in some way separate mandates that include IVF from those

that do not, but only a few look at differences in generosity within the set of states

that cover IVF. Several papers define “strong” versus “weak” mandates, with “strong”

being defined as covering IVF and covering at least 35% of women (e.g., Buckles (2013);

Machado and Sanz-de-Galdeano (2015)). Our work is closest to the papers that define

“comprehensive” versus “limited” mandates, where “comprehensive” includes the early-

adopting states that cover four or more cycles (Massachusetts, Illinois, Rhode Island) and

“limited” includes all other states with some coverage (e.g., Jain et al. (2002); Reynolds

et al. (2003); Bundorf et al. (2007); Henne and Bundorf (2008); Hamilton and McManus

(2012)).7

Our main contribution to this literature is to examine more comprehensively how pa-

tients’ utilization responds to the generosity of mandated IVF coverage. If policymakers

wish to enact mandated coverage for IVF, one crucial element of policy design is the

generosity of coverage. As discussed above, several papers look separately at the most

comprehensive mandates, but by doing so, they miss potential differences in impacts be-

tween, for example, the least generous IVF mandate states and those that are somewhere

in the middle. We further use clinic data to examine differences by generosity level in

patients’ utilization behaviors. We also provide evidence of the spillover effects from dif-

ferent generosity levels of mandated IVF coverage on child adoption as a close alternative

to conceiving one’s own infant.8 Finally, our work benefits from methodological advances

relative to the straightforward two-way fixed effects DD methods used in previous work.9

7New Jersey would also fall into this category, but its mandate was passed after the sample period
used by these studies. Hamilton and McManus (2012) uses slightly different terminology, referring to
these three states as having “universal” mandates.

8Previous studies have examined the relationship between IVF treatment and child adoption (Gumus
and Lee, 2012; Cohen and Chen, 2010). However, the effects of mandated coverage on adoption could
be heterogeneous, depending on the generosity of coverage and women’s age.

9Our work also allows analysis of the more recent mandates legislated in the 2000s, which were not
covered in much of the previous literature. This could be particularly important in the context of
generosity since the studies looking at “comprehensive” mandates were only able to examine the three
states of Massachusetts, Illinois, and Rhode Island, as the New Jersey mandate was passed after their
data ended.
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Four main findings emerge from our empirical analysis. First, we find a discontinuity

in the incidence of multiple births at the age cutoff in mandate states with age restrictions,

suggesting that IVF utilization is contributing to increases in multiple births. Ineligible

women just above the cutoff experience a 5.5% to 7.3% decrease in the likelihood of a

multiple birth compared to eligible women below the cutoff. Second, after controlling for

state-level characteristics, more generous IVF coverage causes an increase in the incidence

of multiple births. For instance, in Massachusetts, which covers an unlimited number of

cycles, the multiple birth rate increases by 27% relative to states with no mandated

coverage, while in Arkansas and Hawaii, states that cover only one cycle, multiple births

only increase by 8%. These effects are larger for older women: in Massachusetts, the

increase is 44% for women over 35, compared with 21% for younger women. Third,

states with more generous coverage see a significantly larger number of cycles performed,

but have fewer average transferred embryos per cycle. This is true for both older and

younger women. Finally, states with more generous coverage have a significantly higher

share of cycles performed on older women, suggesting that patients with lower fertility

are being drawn into treatment. This is mirrored by a lower rate of child adoption

by older women in states with more generous IVF coverage. Our findings suggest that

the change in overall utilization outweighs the reduction in average embryos transferred

per cycle, leading to overall increases in the incidence of multiple births. In addition,

the compositional change towards more cycles to older mothers is likely to affect both

economic costs and health risks.

Our findings suggest that changes in utilization and in the composition of the pool

of patients are essential to understanding the policy implications of increased health

insurance generosity. This is consistent with previous studies on the role of incentives in

healthcare utilization. Chernew et al. (2000) suggest that patients should pay higher out-

of-pocket costs for more expensive treatment in an optimal insurance plan. Einav et al.

(2016) (in the case of breast cancer treatments) and Hamilton et al. (2018) (in the case

of infertility treatments) both suggest that top-up pricing for more intensive treatments

could be optimal. Consistent with the work by Hamilton et al. (2018), Bhalotra et al.
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(2022) find that a Swedish single embryo transfer policy reduced the incidence of multiple

births and improved maternal and infant health.10

2 Background

2.1 IVF treatment

Infertility, defined as the inability to conceive or carry a pregnancy to full term, is rec-

ognized as a disease by both the American Society for Reproductive Medicine and the

World Health Organization. Infertility treatment usually begins with medical tests and

physician advice, often followed by the woman’s use of one of several drugs to stimulate

egg production. If these less expensive treatment methods are unsuccessful, assisted re-

productive technologies such as IVF treatment are often recommended. Success rates of

a single IVF cycle are as low as 20% (CDC, 2015), and many patients require more than

one treatment cycle to achieve a live birth. One cycle of IVF treatment can cost as much

as 46 percent of the average US family’s annual disposable income (Kissin et al., 2016).

IVF treatment includes extracting eggs, obtaining a sperm sample, and manually

combining eggs and sperm. The fertilized eggs, called embryos, are then transferred into

the woman’s uterus. The American Society of Reproductive Medicine practice committee

provides guidelines on the maximum number of embryos to transfer per cycle (Klitzman,

2016).11 However, given the high costs and low success rates of IVF, patients have the

incentive to implant multiple embryos to increase their odds of success and, in doing so,

increase the likelihood of multiple births. Most monetary costs of multiple births are

covered by insurance, and many patients with fertility problems view multiple births as

a desirable outcome (Gleicher and Barad, 2009; Barishansky et al., 2022), even though

multiple births are costly and risky for both mothers and infants (Merritt et al., 2014;
10We are unable in our data to tell whether the increase in multiple births is due to women implanting

more embryos than recommended by current medical practice. However, our SART data show that the
average maximum number of embryos transferred across clinics is greater than SART guidelines would
recommend. For example, in 2013-2015, the recommendation for women ages 38-40 is three embryos,
but the average maximum across clinics is five.

11Currently, recommendations are for 1-2 embryos per cycle for women under 35 years old and increase
with age.
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Caserta et al., 2014).12

2.2 Mandated IVF coverage in health insurance plans

Due in part to concerns about the high cost of IVF treatment, between 1978 and 2005

twelve states in the US passed legislation pertaining to coverage of infertility treatment

in employer-provided private health insurance plans.13 In these mandate to cover states,

private health insurance companies are required to cover infertility treatment in all of

their policies.14

The level of coverage in the mandate to cover states is quite heterogeneous. Some

state mandates do not require any coverage of IVF. Within the set of states that do,

mandates vary along a number of dimensions. Most important is the number of covered

cycles, but mandates vary along other dimensions as well (see Table 1).15 However, these

dimensions of generosity are generally time invariant once a mandate is passed, and are

highly correlated with the mandated number of cycles covered, so we treat the number

of cycles as a proxy for the overall generosity level of mandated coverage. During our

study period, Montana, New York, Ohio, and West Virginia mandate some coverage for

fertility treatment but do not require coverage of IVF. We group these states as Level 0

coverage. Arkansas and Hawaii have the least generous coverage, and we group them as

Level 1. Connecticut is the only state with Level 2 coverage. Rhode Island and Maryland

have Level 3 coverage, and Illinois and New Jersey are grouped as states with Level 4

coverage. Massachusetts, with an unlimited number of covered cycles, has the most

generous mandate and has Level 5 coverage. There are 35 states that do not mandate
12The average cost of a singleton birth was $27,000 in 2012, while twin and triplet births cost $115,000

and $435,000, respectively (Lemos et al., 2013). The risks of multiple births to mothers include high
blood pressure, gestational diabetes, and a higher cesarean section rate. The risks to infants include low
birth weight, prematurity, and sometimes long-term disabilities like autism and cerebral palsy (Hoffman
and Reindollar, 2002; Fritz, 2002; Martin and Park, 1999; Reynolds et al., 2003).

13Under the 1974 Employer Retirement Income Security Act (ERISA), self-insured firms are exempt
from these mandates.

14In mandate to offer states, health insurance companies are required to offer plans that would cover
infertility treatment but are not required to include this coverage in all policies. We exclude these states
(California, Texas, and Louisiana) from our empirical analysis.

15We extract the mandated coverage date and the coverage details from the National Infertility Asso-
ciation website. For more information, see https://resolve.org.
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coverage for infertility treatments.16 These never mandate states serve as a control group

in our analysis. As a robustness test below, we examine whether other dimensions of

coverage besides the number of cycles affect the relationship between mandated coverage

and multiple births.

3 Data

We use several data sources for our empirical analysis. First, we use birth certificate data

from the National Center for Health Statistics Detail Natality Files. The data comprise

records of live births in the US from 1975 to 2014 and include parental information

such as the mother’s age, education, and race, the father’s race, parental marital status,

and state of residence, and infant information such as sex, birth order, and plurality

(single or multiple births). Our study sample includes the twelve mandate to cover states

(treatment group) and the 35 never mandate states (control group). We aggregate the

data into state-year cells for our empirical analysis.17

Our primary outcome variable is the multiple birth rate, defined as the number of

multiple births (i.e., not singletons) per hundred live births.18 Multiple births are a

valuable proxy for the intensity of treatment, as more than one-third of twins and more

than three-quarters of triplets and higher-order multiples in the US in 2011 resulted from

conceptions assisted by infertility treatments (Kulkarni et al., 2013). However, one caveat

of this approach is that in the birth certificate data, we have no way of knowing whether

multiple births are naturally occurring, due to IVF treatment, or due to other infertility

treatment besides IVF.19 Our simple multiple birth indicator also does not differentiate
16Since the end of our study period; four additional states have mandated IVF coverage: Colorado

(2020), New Hampshire (2020), New York (2020), and Delaware (2018). These states are considered
control states in our analysis.

17The public-use birth certificate data includes the mother’s state of residence only through 2004, so we
use restricted access data files from 2005 to 2014. A few states do not report some parental information
for some years. We impute these missing values in the state-year aggregated data by setting them to the
corresponding variable’s average in the years before and after.

18There is one record for each infant in the data file (e.g., there are three records for a triplet birth).
The number of infants, therefore, over-represents the incidence of multiple births. To deal with this
issue, we follow Buckles (2013) and construct a weight by dividing one by the plurality of each infant
(i.e., the weight of each infant in a triplet birth is set as 1/3). We use these weights to convert the unit
of analysis from infant to birth.

19The birth certificate data includes a variable indicating births with assisted reproductive technology
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between, for example, a twin birth and a quadruplet birth, even though these have very

different cost implications, so we also examine the effects of generosity on the number of

infants per thousand live births as an alternative outcome variable.

Second, we use the March Annual Social and Economic Supplement of the Current

Population Survey (CPS) to create control variables at the state-year level, including the

percentage of women of childbearing age, the female labor force participation rate, and

real per capita income.20 To account for the share of women who will be affected by the

mandates, we control for the percentage of working-age individuals with private health

insurance, as well as the percentage of working-age individuals in large firms (defined as

those with +500 employees) as a proxy for the share of workers in self-insured firms and

therefore not subject to the mandates under the Employer Retirement Income Security

Act (ERISA).21

Third, we use fertility clinic-level data collected from 1996 to 2010 by the Society for

Assisted Reproductive Technology (SART) to study patients’ utilization of IVF treat-

ment.22 The data include information on the number of cycles initiated in each clinic,

the share of cycles performed on women 35 and older, and the average number of embryos

transferred per cycle. We exclude frozen, and donor cycles since only fresh and non-donor

cycles are covered by mandates in many states.

Finally, we use data on child adoptions from the National Data Archive on Child

Abuse and Neglect (NDACAN) from 2000 to 2014.23 The data include the records of all

the public adoptions in the US and has information on adoptive parents’ age and race; the

adopted children’s age, sex, and race; and the year and the state in which the adoption

is finalized. We focus on children from birth to age six since younger children might be

closer substitutes for newborn infants, but we examine adoptions of older children as well.

starting from 2011. However, the variable has many missing values and is not very informative.
20We convert all dollar values to 2007 dollars using the Consumer Price Index.
21Large firms are more likely to self-insure (Gabel et al., 2003; Park, 2000).
22SART has a voluntary reporting system, and about 10% of clinics do not report data. SART does

not regulate clinic practices. The available range of data does not cover early mandates in the 1980s and
early 1990s.

23The data are collected under a federally mandated system for all children in foster care and on
children adopted under the auspices of the state public child welfare agency. The available range of data
does not cover the early mandates in the 1980s and early 1990s.
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We create a variable representing the number of adopted children per one thousand live

births in each state-year cell.24

4 Empirical analysis

4.1 Descriptive evidence

Table 2 presents summary statistics from the birth certificate data from 1975 to 2014,

presented in ten-year intervals and broken out by IVF mandate status. In more recent

years, mothers are, on average, older, more educated, and less likely to be married. The

multiple birth rate and the number of infants per thousand live births are also higher in

recent years. The incidence of multiple births in states with mandated coverage is higher

than that in the never mandate states, and this gap is widening over time.

Figure 1 plots trends in multiple births per hundred live births by generosity level of

mandated IVF coverage separately for older and younger women.25 Three main patterns

emerge. First, the incidence of multiple births is increasing across all states over our study

period. Second, more generous coverage is generally associated with more rapid growth

in the incidence of multiple births. Third, the incidence of multiple births is higher for

older women.26

4.2 Is the increase in multiple births driven by IVF treatment?

Older women are more likely to have multiple births, even in the absence of infertility

treatment (Hazel et al., 2020; Adashi and Gutman, 2018; Beemsterboer et al., 2006).27

24Our data do not include private adoptions (either domestic or international). Our analyses of the
insurance mandates’ effects will be biased if the generosity of mandated IVF coverage differentially affects
private adoptions versus those through the state welfare system.

25The age of 35 is considered a turning point in women’s fertility: one-third of women older than 35
experience fertility problems (CDC, 2015). Therefore, we present all of our empirical analyses first for
all women, then separately by women 35 and older and women younger than 35 years.

26The patterns for the number of infants per thousand live births are similar.
27Women are more likely to conceive fraternal twins once they reach their 30s as a result of an evolu-

tionary response to combat declining embryo viability (Hazel et al., 2020). Adashi and Gutman (2018)
find that by the time white women reach age 35, they are about three times more likely to have fraternal,
non-identical twins. African American women are four times more likely to have twins at age 35. The
risk for triplets and quadruplets goes up four and a half times and six and a half times, respectively.
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Figure 2 plots multiple birth rates by women’s age and shows that the increasing pattern

is stronger in recent years. To examine the extent to which IVF coverage might be

responsible, we compare multiple birth rates of women eligible for mandated IVF coverage

with those for ineligible women within the same state.

Women over 40 years old in Connecticut and Rhode Island and women over 46 years

old in New Jersey are not eligible for mandated coverage (see Table 1). We explore

the sharp discontinuity in age eligibility for mandated coverage in these three states

using a Regression Discontinuity Design (RDD) model, using women’s age as the running

variable. We compare the incidence of multiple births to women right above the age

eligibility threshold (who are not eligible for mandated coverage) to those right below the

threshold (who are eligible). We estimate a regression of the form:

yia = δ + f(a) + ρDa + βXi + ϵi (1)

where yia denotes whether the birth to woman i with age a is a multiple birth. Da is

the treatment dummy that switches on for women above the eligibility age threshold.

Xi is a set of individual characteristics, including women’s race, education, and marital

status. As noted above, older women are more likely to have multiple births even without

treatment, so f(a) denotes the age trend to control for this relationship. ϵi is the error

term. The coefficient of interest is ρ, which captures the intent-to-treat effect of the

mandated coverage on the likelihood of a multiple birth. The identification assumption

is that the other unobservable variables affecting the incidence of multiple births change

smoothly in the neighborhood of the age eligibility threshold (Hahn et al., 2001).28

We follow Schmidt (2007) and allow mandated coverage to affect multiple births with

a two-year delay. This accounts for two factors: first, infertility treatments may not lead

immediately to conception, and second, a successful conception will not translate into a

birth until nine months later. Therefore, we use the birth certificate data from two years
28We do not directly examine the impact of the generosity of mandated IVF coverage on the total

number of births, but previous papers have found that mandates increase the number of births, particu-
larly for older women (e.g., Schmidt (2005, 2007)). If the mandates are also increasing the denominator,
this would bias us against finding an effect on multiple births at the cutoff.
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after the mandate date in each state up to 2014 and focus on women within the five-year

window around the eligibility age for estimating Equation (1).29

Figure 3 presents the RDD plots, and Table 3 presents the estimated effects. The

bandwidth and degree of the fitted polynomial are selected using the method of Calonico

et al. (2020), and the standard errors are clustered at the age level. After controlling

for individual characteristics, the incidence of multiple births for women just above the

age cutoff (and therefore not eligible for mandated coverage) is 7.29%, 5.94%, and 5.55%

(0.53, 0.34, and 1.28 percentage points) lower respectively in Connecticut, Rhode Island,

and New Jersey compared to eligible women just below the age cutoff.30 We then estimate

the effects on the incidence of multiple births in New Jersey from a placebo eligibility

age threshold of 40 years.31 The last panel of Table 3 shows that the estimated effect

is negligible and insignificant, providing additional confidence that the RDD estimates

presented in the earlier columns are picking up causal effects. Overall, the findings

from our RDD analysis provide evidence that mandated coverage for IVF treatment is

a driving factor in the increase in the incidence of multiple births in the states with

mandated coverage.

4.3 Mandated IVF coverage and incidence of multiple births

We next use a Generalized Synthetic Control (GSC) framework developed by Xu (2017)

to estimate the impact of coverage generosity on the incidence of multiple births. Unlike

the RDD model, which estimates local average treatment effects narrowly focused around

the age eligibility cut-offs in only three states, the GSC model allows us to estimate causal
29The sample includes all births to women ages 35 to 45 in Connecticut between 2007 (two years after

mandated IVF coverage in 2005 for women below 40 years) and 2014; in Rhode Island between 1991
(two years after mandated IVF coverage in 1989 for women below 40 years) and 2014; and all births to
women ages 41 to 51 in New Jersey between 2003 (two years after mandated IVF coverage in 2001 for
women below 46 years) from the birth certificate data.

30Sample means presented in Table 3 indicate that the multiple birth rate for our New Jersey sample is
much higher than that for the relatively younger women in our Connecticut and Rhode Island samples.
The sample mean for the placebo sample in New Jersey, where the women are of the same ages as women
in the Connecticut and Rhode Island samples, is more similar to those sample means. This observation
is consistent with the graphical evidence in Figure 2, which shows that multiple birth rates rise steeply
for older women.

31The placebo estimates in New Jersey uses data on all the births to 35 to 45 years old women (an
age window with no change in eligibility for IVF coverage) between 2003 (two years after mandated IVF
coverage for women below 46 years old) and 2014.
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effects of the mandates for the full sample of women. Much of the previous literature on

infertility mandates uses Difference-in-Difference models, which rely on the assumption

that the trends between treatment and control groups would have been parallel in the

absence of the policy change. While this might be true for the adoption of any mandate,

Figure 1 suggests that it might be violated when looking specifically at the generosity of

mandates, and our GSC framework helps with this issue. In addition, recent methodolog-

ical advances highlight problems with the standard DD or two-way fixed effects models

when policy variation occurs in different states at different times (e.g., Goodman-Bacon

(2021), de Chaisemartin and D’Haultfoeuille (2020)). Our analysis does not suffer from

these issues since we compare states with a certain level of coverage (treatment group)

to never mandated states (control group), so we are not contaminating our control group

with previously treated states.32

The GSC model is a generalization of conventional synthetic control models using

a linear interactive fixed-effect framework, in the spirit of the weighting scheme of the

original synthetic control method developed by Abadie et al. (2010).33 A GSC model uses

the control and treatment groups (in pre-treatment periods) to impute treated counter-
32The mandate dates of states grouped in each level of coverage are generally quite close to each other

(see Table 1), further limiting the contamination due to staggered adoption of mandated coverage. If
there is variation in the treatment effect across states and time, then the estimated effects from a DD
model would be a non-convex weighted average of the estimated effect for each state, where the weights
sum to one but may be negative. The possibility of negative weights is concerning because, for instance,
the treatment effect for each state could be positive (negative), and yet the estimated coefficient from a
DD or two-way fixed effect model might be negative (positive) (see Roth et al. (2022) for more details).
Figure E.1 in Appendix E plots the estimated weight of each mandated state over the years, which are
the residuals from a regression of a mandated coverage indicator on state and year fixed effects, scaled
by the sum of the squared residuals across a pooled sample of mandated and never mandated states
(see de Chaisemartin and D’Haultfoeuille (2020) for more details). None of the treated states has a
negative weight, suggesting that contamination due to the staggered adoption of mandated coverage is
not a threat to our estimates.

33There are two main approaches to estimate causal effects when the common trend assumption is likely
to be violated. The first approach uses a matching method to condition on pre-treatment observable
characteristics (Abadie, 2005; Abadie et al., 2010, 2015). This approach helps balance the effects of time-
varying confounders between the treatment and control groups. The second approach explicitly models
the unobserved time-varying confounders using an interactive fixed-effect model, including state-specific
intercepts interacting with time-varying coefficients (Bai, 2009). GSC links the matching and interactive
fixed-effect methods and brings together synthetic control and interactive fixed-effect models, where the
DD model is a particular case. For a review of recent studies on synthetic control methods, see Abadie
(2020).
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factuals. We estimate a model of the form:

yit = δitDit + βX ′
it + λ′

ift + ϵit, (2)

where i and t respectively denote state and year and yit denotes the outcome variable. Our

main outcome variables are the multiple births per hundred live births and the number of

infants per thousand live births. Dit is a dummy variable coded as one for treated state

i in years following the mandated coverage.34 The vector Xit is a set of time-varying

state-level characteristics, including mothers’ age, marital status, education, race, and

fathers’ race. We also include the state-level socioeconomic characteristics from the CPS

data discussed above.

λ′
ift denotes the interactive fixed effects where λi and ft are r-vectors of state-specific

intercepts and time-varying coefficients, respectively, capturing unobserved common fac-

tors that can be decomposed into a state-year multiplicative form. This interactive

component covers a wide range of unobserved heterogeneity, but it does not capture

unobserved confounders that are independent across states. ϵit is the error term and

captures any remaining unobserved components that affect the outcome variable. r is

estimated through a data-driven procedure where a larger value covers a broader range

of unobserved heterogeneity. Intuitively, a GSC framework allows the data to determine

which model fits better.35 Details of the estimation procedure of our GSC framework are

provided in Appendix B.

The coefficients of interest are δit, which capture the treatment effect on treated state

i at time t. The average treatment effect on the treated is the average of all the treated

states’ estimates. We use data from a 15-year window around the effective mandated

coverage year (15 pre- and 15 post-treatment periods) for our estimations.36 We aggregate

the data into state-year cells and estimate the model separately for each generosity level
34As noted above, we follow Schmidt (2007) and allow the mandated coverage to affect the incidence

of multiple births with a two-year delay.
35For instance, for r = 2 if we set λ′

i = (1, αi) and f ′
t = (τt, 1) then λ′

ift = αi + τt. In this case, the
GSC model is reduced to a conventional DD model with state and time fixed effects.

36Exceptions are Connecticut (mandate enacted in 2005) with an 8-year post-treatment period and
Hawaii (1987) and Arkansas (1987) with 10-year pre-treatment periods because the 15-year window for
these states falls outside our data availability period of 1975–2014.
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indicated in Table 1. Standard errors are estimated using a parametric bootstrapping

procedure using 2,000 re-sampling draws of the residuals (Xu, 2017).

The GSC framework has several advantages relative to the original synthetic control

method by Abadie et al. (2010). First, it allows for more than one treated state with vari-

able treatment periods. Second, it provides estimates of standard errors and confidence

intervals, making inferences more reliable. Third, it provides a data-driven procedure to

select the number of factors in an interacted fixed-effect model (r) to minimize the perdi-

tion error and reduce over-fitting risk. Furthermore, this approach enables us to take

advantage of the long pre-treatment panel to decrease the bias of the estimated effects.37

To pool states with similar generosity levels of coverage but different enacted mandate

dates (i.e., level 1 coverage states: Arkansas (mandate date: 1987) and Hawaii (1989)), we

assume that the responsiveness to the mandated coverage at the relative time of coverage

is similar across the states, such that our analysis picks up the differences in generosity

levels of the mandated coverage. This assumption is plausible since the mandate dates for

states grouped together are generally very close to each other (see Table 1). However, we

also estimate the GSC model separately for each state, comparing it to never mandated

states, and present results in Figure D.1 in Appendix D.

4.4 GSC Results

Plots presenting the estimated counterfactual and estimated effects on the treated states

for each level of coverage are presented in Figure 4 and suggest that the GSC estimator

works quite well in imputing counterfactuals for the treated states to match the control

group in the pre-treatment periods. Table 4 presents the estimated effects of the generos-

ity level of mandated coverage on multiple births per hundred live births.38 The first set

of columns presents the estimated effects for all women. Panel A presents the estimates

using one indicator that pools all mandate to cover states, regardless of generosity level,

for comparison with the previous literature on infertility mandates. The first column

shows that any mandated coverage increases the multiple birth rate by 0.10 percentage
37See Abadie (2020) for a review of recent synthetic control methods.
38See Figure C.1 in Appendix C for a graphical representation of the estimates.
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points relative to the never mandated states, an 8.84% increase from a mean value of

1.13. The second column adds covariates to the model, which reduces the magnitude

of the estimated effect to a 0.05 percentage point (4.42%) increase in the multiple birth

rate.

Panels B through G show estimated effects broken out by level of generosity. Panel B

shows that coverage for less intensive infertility treatment only (level 0, with no coverage

for IVF) does not affect the multiple birth rate relative to states that never enact man-

dates. This finding is relatively consistent across our results. Panels C through G show

that states with more generous coverage generally exhibit larger increases in multiple

birth rates. Estimated effects with covariates range from a 0.08 percentage point increase

(8.33%) in states with level 1 coverage to a 0.24 percentage point increase (23.07%) in

states with level 5 coverage.39

The remaining columns of Table 4 present the estimates for women 35 and older

versus younger than 35, and the GSC plots by women’s age are presented in Figure 5

and Figure 6. After controlling for covariates, the estimated effects for women 35 and

older tend to be larger than those for younger women, especially at higher coverage

levels. For older women, the estimated effects after controlling for covariates vary from

no significant effect in states with level 1 coverage to a 0.59 percentage point (46.45%)

increase in states with level 5 coverage.40 The estimated effects for younger women,

especially for high generosity states, are much smaller and less statistically significant

(for example, a 0.11 percentage point (10.78%) increase in level 5 states). The estimated

effects from level 2 coverage, which includes only Connecticut and limits the number of

transferred embryos to two, are relatively small and insignificant. This could imply that

limiting the number of transferred embryos could be an effective policy intervention for

decreasing the incidence of multiple births.

While the multiple birth rate measure indicates whether the birth included more than
39The point estimate for level 1 coverage is negative in Column 1 without covariates but becomes

positive in Column 2 when covariates are added
40The point estimate of level 1 coverage on older women is negative but not statistically different from

zero. Since these states only cover one cycle, this could be due to older women needing more than one
cycle and/or to fewer older women using the treatment.
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one infant, our alternative outcome measure, the number of infants per thousand births,

allows, for example, triplets to count more than twins. Table 5 presents the effects of the

generosity level of mandated coverage on the number of infants per thousand live births.

The overall findings are consistent with those from the multiple birth rate analysis. After

controlling for covariates, the estimated effect of any mandated coverage (Panel A) is 0.64

additional infants per thousand live births (a 5.51% increase). The estimated effects by

the generosity level of coverage after including covariates range from 0.91 infants (9.37%)

in states with level 1 coverage to 2.71 infants (25.69%) in states with level 5 coverage,

and again, the effects are larger for older women.

Table C.1 presents p-values for the two-sample Welch statistics testing H0 : δLeveli =

δLeveli+1 versus H1 : δLeveli < δLeveli+1 for estimates with covariates presented in Table 4

and Table 5. i denotes the level of mandated IVF coverage. The tests assume that the

population distributions are normal but have unequal variances. We can reject the null

hypothesis with only a few exceptions, suggesting that in general estimated effects from

higher levels of coverage are statistically larger, but the estimated effects are not strictly

increasing.

As discussed above, we use the number of covered cycles as a proxy for generosity

of the mandate, but there are other dimensions along which mandates vary. In Table

D.1 in Appendix D, we examine whether the effect of any mandated coverage for IVF

on multiple births varies depending on the presence of these other restrictions. These

findings suggest that restrictions on waiting time, marital status, number of transferred

embryos, and life time cap might affect the incidence of multiple births.

Overall, our estimates from the GSC framework show that mandated coverage causes

an increase in the incidence of multiple births, that states with more generous coverage

experience larger estimated effects, and that effects are larger for women over 35 years.41

41There are other dimensions besides age that are strongly associated with infertility and IVF utiliza-
tion, including education, marital status, and race (Bitler and Schmidt, 2006). We estimated the effects
of the generosity of mandated coverage on the incidence of multiple births along these dimensions, and
the results are mostly consistent with the patterns found in the previous literature. These estimates are
available from the authors upon request.
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4.5 Robustness analysis

We also estimate the effects of coverage generosity on the incidence of multiple births

using a DD framework. In addition to serving as a robustness check of our findings

from the GSC framework and facilitating comparison with the previous literature, this

analysis updates findings of Buckles (2013), which uses data from 1980 to 2002. Our data

go through 2014, allowing us to include two states with more recent mandated coverage;

Connecticut and New Jersey, which mandated coverage in 2005 (2 cycles) and 2001 (3

cycles), respectively.

We also estimate the effects of the generosity of mandated coverage on the incidence of

multiple births using a DDD framework, further refining the treatment group by mothers’

age (below and above 35 years old). This analysis allows us to control for two kinds of

potentially confounding trends. First, we control for any time trends in the incidence of

multiple births for women of a particular age that are constant across states. Second,

we control for differences across states in the incidence of multiple births that affect

all mothers, possibly due to other state policies or state-level economic conditions that

might affect women’s fertility decisions. We aggregate the birth data into state-year and

state-year-age cells for estimating the DD and DDD models, respectively. Specifications

of the models and the estimated effects on multiple births per hundred live births and

the number of infants per thousand live births are presented in Appendix E.

Our estimates from the DD model are statistically significant and larger in magnitude

than the estimates of Buckles (2013), who found small positive but insignificant effects on

the overall multiple birth rate. This difference in findings could be driven by the states

with the most recent and more generous mandated coverage, which were not included in

the previous work. In Table E.2 in Appendix E, we show that when we limit the range of

years to 1980-2002, the same years used by Buckles (2013), our estimated DD coefficients

fall in size and are no longer statistically significant.

The overall story from the DD and DDD estimates confirms our findings from the

GSC framework; more generous coverage is associated with an increase in the incidence

of multiple births, and this association is stronger for older women.
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5 Patients’ behaviour

Our estimates from the GSC models show that more generous coverage causes an in-

crease in the incidence of multiple births. This is despite speculation that more generous

coverage might reduce the incidence of multiple births by reducing patients’ incentives to

transfer more embryos per cycle. However, more generous IVF coverage could also incen-

tivize new patients to seek treatment, and these new patients may have lower probabilities

of success.42

We use two additional data sources to shed light on patients’ behavior from mandated

coverage generosity. First, we investigate patients’ utilization behavior using fertility

clinic-level data. Second, we investigate child adoption as the main alternative to live

birth. However, since data collection for both of these datasets started after several

mandates were passed, these analyses should be considered descriptive and do not provide

causal estimates.

5.1 Evidence from IVF clinics

We use SART’s clinic-level data from 1996 to 2010 to investigate the relationship between

coverage generosity and patients’ utilization behavior. Table A.1 presents summary statis-

tics for these data. The average number of embryos transferred per cycle decreases over

our study period in both mandated and never mandated states, likely due in part to

changes in SART recommendations over time.43 More embryos are transferred per cycle

for women 35 and older than for younger women. In recent years, the share of cycles

performed on women 35 and older is ten percentage points higher in the mandated states

relative to the never mandated states.

Unfortunately, the mandate date for six out of the eight states with IVF coverage falls

before the SART data is available. As a result, we cannot use a GSC model to examine
42Individuals on the margin of treatment could be those with lower probability of success, or those

with lower ability to pay. Our descriptive results in the next section suggest the former, but we cannot
fully tease out these two possibilities with our data.

43A major change to SART’s guidelines occurred in 2004. We estimated an event study model and
found that this change is associated with reducing the number of embryos transferred for both younger
and older patients. However, the estimated effects do not vary by coverage generosity. The estimates
are available from the authors on request.
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how coverage generosity affects patients’ utilization behavior. We instead use a linear

Mixed Effect (ME) model to estimate the relationship between coverage generosity and

patients’ utilization behavior. This approach takes advantage of the hierarchical structure

of our data, with clinics nested within states.44 This analysis should be considered purely

descriptive and not intended to show causal effects. Instead, we view this analysis as

complementary to our causal GSC estimates.

We exploit random variation between clinics within states in addition to variation

across the states. An example of random variation between clinics might be doctors’

opinions about the appropriate number of embryos to transfer, affecting the incidence of

multiple births from an IVF cycle. We estimate a model specified as follows:

yist = α + ρLevelst + βX ′
st + λt + νγi + ωγs + ϵist (3)

where i, s, and t denote clinic, state, and year, respectively, and yist denotes the outcome

variable. Our outcome variables are the total number of cycles per clinic, the share of

cycles performed on women 35 and older, and the average number of transferred embryos

per cycle. Levelst is an indicator for the generosity level of mandated coverage in state

s at year t as defined above, with never mandated states as the reference group. The

vector Xst includes the time-varying state characteristics from the CPS data described in

Section 3. λt denotes year fixed effects, which pick up any factors changing over time that

are common across the states and clinics (e.g., advances in IVF technology at the national

level). γi and γs denote clinic and state random effects, respectively. ϵist captures any

remaining unobserved factors affecting the outcome variable. The coefficient of interest

is ρ, which captures the relationship between the generosity level of mandated coverage

and the outcome variable. ME models assume that first, clinic and state-level residuals

are uncorrelated; second, the errors (as measured by the residuals) at the state level are

uncorrelated.

Table 6 presents the estimated coefficients for all women, as well as broken out by
44ME models are extensively used in education research where the independence assumption for causal

inference in a linear model is violated; for instance, in studies where students and teachers are nested in
classrooms, schools, and districts (Goldstein, 1999).
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age. These results suggest the following: First, more generous coverage is associated

with a significantly higher number of cycles in a clinic, on average, which would lead

to an increase in multiple births. Second, more generous coverage is associated with

fewer transferred embryos per cycle for both older and younger women, with a stronger

relationship for younger women. This, on its own, would imply a lower incidence of

multiple births. Third, more generous coverage is associated with a higher share of cycles

initiated by older women, which suggests changes in the composition of the patients

seeking treatment. Given that older women transfer more embryos per cycle, this would

imply a higher incidence of multiple births. Our GSC results using birth certificate

data presented above show an overall causal increase in the incidence of multiple births,

suggesting that the overall utilization effect, combined with the compositional effect, are

likely to dominate.

5.2 Evidence from child adoption

Women who cannot naturally conceive an infant have two alternative pathways to moth-

erhood: using IVF treatment or adopting a child. There is a significant overlap between

these two options. More than half of the individuals who received infertility treatment

had also considered adoption (Chandra et al., 2005). Gumus and Lee (2012) show that

one-third of individuals who consider adoption have also sought IVF treatment. Both

of these options have pros and cons. Despite technological advances, IVF treatment is

expensive and has a low probability of success. Adopting a child is expensive, uncertain,

and can take a long time. Furthermore, some individuals might prefer to have a biological

child. If more generous mandated coverage for IVF induces more older women to initiate

IVF, we might expect that effect to be accompanied by a decrease in child adoptions.

Previous studies have examined the relationship between IVF treatment and child

adoption. Gumus and Lee (2012) find that higher adoption rates at the state-year level are

associated with fewer IVF cycles performed. Cohen and Chen (2010) find that mandated

IVF coverage did not affect child adoption relative to never mandated states. However,

the effects of mandated coverage on adoption could be heterogeneous depending on the
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generosity of coverage and the women’s age.

We use NDACAN’s child adoption data from 1995 to 2014 to investigate the rela-

tionship between the generosity level of mandated IVF coverage and child adoption. We

focus on adopted children from birth to age six as such adoptions could be considered a

substitute for conceiving through IVF in some circumstances.45 Table A.2 in Appendix

A presents descriptive statistics for these data. In the early years of our study period,

the mandated states’ adoption rate is higher than in the never mandated states. How-

ever, by the latter half of our time period, this pattern had reversed itself such that the

never-mandated states saw two more adopted children per ten thousand live births than

did the mandated states.

Similar to our SART data analysis, we cannot use our GSC model here because the

mandate date for six out of the eight states that cover IVF falls before the availability

of the adoption data. To examine the relationship between IVF coverage generosity and

child adoption, we estimate an ME model similar to Equation (3), including time fixed

effects and state random effects. The outcome variable is the number of adopted children

between birth and age six per ten thousand live births in each state-year cell. Table

7 presents the estimated coefficients, first for all women and then broken out by the

women’s age. Our results suggest a negative association between the generosity level

of mandated coverage and the number of adopted children per ten thousand newborn

infants that is much stronger for older women than for their younger counterparts.

Our analyses of these three different data sources (from birth certificates, fertility clin-

ics, and child adoptions) have three main takeaways. First, more generous IVF coverage

increases the incidence of multiple births. Second, more generous coverage is associated

with fewer transferred embryos for all women, but the association is stronger for younger

women than older women. Third, more generous coverage is associated with both an

increase in the number of cycles performed, as well as changes in the composition of

patients, where the share of cycles performed on women over 35 years is greater in states

with more generous coverage. This is mirrored by fewer child adoptions to older women
45We estimated our model for children older than six years, and the findings are similar. The estimates

are available from the authors on request.
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in states with more generous coverage. These findings provide suggestive evidence that

differences in both overall utilization and in the composition of patients may dominate

differences due to the transfer of fewer embryos per cycle, resulting in the overall increase

in costly multiple births that we find in the birth certificate data.

6 Conclusion and policy implications

How do increases in the accessibility of expensive medical treatments affect patients’

utilization behavior, and what are the resulting implications for healthcare costs? We

explore the generosity of state-level mandated coverage for IVF treatment in the US.

More generous coverage has been proposed as a way to decrease the incidence of risky

multiple births by encouraging patients to transfer fewer embryos per cycle. We show

that more generous coverage leads to higher rates of risky and costly multiple births.

Our descriptive analysis using the SART data shows that while more generous coverage

is associated with fewer embryos transferred per cycle, it is also associated with both more

cycles per clinic and a larger share of cycles performed on older women. Our analysis

highlights the importance of unintended consequences of the increased accessibility of

an expensive medical treatment through changes in the composition of patients seeking

treatment.46

Our results are consistent with work by Bitler and Carpenter (2016), who show that

mandated insurance coverage for mammography significantly increased mammography

screenings and subsequently increased the detection of pre-cancers. However, they also

find that a large share of the increased screenings resulted from utilization that was

inconsistent with the American Cancer Society’s recent recommendations. Our findings

are also related to suggestions by Hamilton et al. (2018) (in the context of IVF) and

Einav et al. (2016) (in the context of breast cancer treatment) for either regulating

or limiting the intensity of treatments, for imposing a top-up price for more intense

treatments, or for some combination of the two. In the IVF context, Hamilton et al.
46Our results are also consistent with the possibility that women in high generosity states are waiting

longer to have children (e.g., Abramowitz (2017)).
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(2018) argue that a value-based policy in which insurance plans cover single embryo cycles,

but patients must pay a top-up cost for transferring additional embryos could maximize

welfare. This is consistent with findings of Bhalotra et al. (2022) from a Swedish single

embryo transfer policy, which reduced the incidence of multiple births and improved

maternal and infant health. Ignoring compositional effects could mean that increased

access without regulation might impose additional burdens on the healthcare system.
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Tables

Table 1: Mandated infertility coverage in private health insurance plans

Mandate Coverage Number of Long min Religious Firm size Marital status Age Restricted Lifetime
year level covered cycles infertility time exemption exemption restriction restriction embryo transfers spending cap

Montana 1987 0 0 - - - - - - -

New York 1990 0 0 - - - - - - -

Ohio 1991 0 0 - - - - - - -

West Virginia 1995 0 0 - - - - - - -

Arkansas 1987 1 - X (2 years) - - X - - $15, 000

Hawaii 1989 1 1 X (5 years) - - X - -

Connecticut 2005 2 2 - X - - X (≤ 40) X (2 embryos)

Maryland 1985 3 3 - X X (≤ 50) - - - $100, 000

Rhode Island 1989 3 - - - - - X (25-40 years) - $100, 000 + 20% co-payment

Illinois 1991 4 4 - X - - - - -

New Jersey 2001 4 4 X (2 years) X X (≤ 50) - X (≤ 46 years) -

Massachusetts 1987 5 Unlimited - - X (≤ 25) - - - -

Note: “X” denotes states with a specific aspect of mandated IVF coverage. States with “Long minimum infertility time” are those
which require more than one year of infertility to be eligible for coverage. States with “Religious exemption” are those which do not
require religious organizations to provide coverage. In states with “Firm size exemption,” employers with fewer than a certain number of
employees do not have to provide coverage. States with “Age restrictions” impose an age restriction for coverage eligibility. Connecticut
restricts the number of embryos transferred.
Source: RESOLVE: The National Infertility Association https://resolve.org [Accessed on November 2021]
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Table 2: Summary statistics for Detail Natality Data, 1975-2014

Never mandated states (control group) Mandate to cover states (treatment group)
1975-1984 1985-1994 1995-2004 2005-2014 1975-1984 1985-1994 1995-2004 2005-2014

Multiple births per 0.98 1.16 1.50 1.68 1.02 1.24 1.81 2.03
hundred live births (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Number of infants 1,009.92 1,011.89 1,015.55 1,017.24 1,010.38 1,012.74 1,018.96 1,012.90
per thousand live births

Mean mothers’ age 24.80 26.05 26.82 27.35 25.51 27.02 28.18 28.63
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Mothers over 35 years (%) 4.39 7.79 11.74 12.86 5.55 10.16 16.49 18.16
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

Married mothers (%) 82.16 73.24 66.52 60.08 78.80 72.31 67.98 61.69
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

Mothers with college degree (%) 36.13 41.23 56.34 70.56 38.37 46.19 62.95 89.82
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

White mothers (%) 81.85 79.88 79.65 77.24 77.94 75.71 74.56 71.86
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

First time mothers (%) 36.54 32.94 33.21 32.44 36.38 33.61 32.18 31.33
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

Number of births 17,578,332 19,207,128 19,849,815 20,966,038 5,009,715 5,701,859 5,477,201 5,217,796
Notes: Source: National Center for Health Statistics Detail Natality files. Weights constructed as described in Section 3 are used to
calculate statistics in this table. Standard deviations appear in parentheses.
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Table 3: Effects of mandated IVF coverage on the likelihood of a multiple birth, RDD model

Connecticut Rhode Island New Jersey Placebo New Jersey
(1) (2) (3) (4) (5) (6) (7) (8)

Estimated effect -0.58*** -0.53*** -0.43*** -0.34*** -1.58*** -1.28*** 0.0009 0.04
(0.001) (0.004) (0.006) (0.008) (0.003) (0.002) (0.06) (0.06)

Mean 7.95 7.95 5.72 5.72 23.06 23.06 7.71 7.71
(27.05) (27.05) (23.23) (23.23) (42.13) (42.13) (26.68) (26.68)

Age cutoff 40 40 40 40 46 46 40 40
Coverage level 2 2 3 3 4 4 0 0
Bandwidth 1.94 1.95 1.97 2.01 2.43 2.24 3.26 3.63
Degree of polynomial 1 1 1 1 1 1 1 1
Covariates included No Yes No Yes No Yes No Yes
Number of observations 49,904 49,904 30,732 30,732 19,790 19,790 199,959 199,959

Note: This table presents the estimated effects of mandated IVF coverage on the likelihood of a multiple birth from the RDD model
specified in Equation (1). The data includes all births to women ages 35 to 45 in Connecticut between 2007 (two years after mandated IVF
coverage in 2005 for women below 40 years) and 2014, and in Rhode Island between 1991 (two years after mandated IVF coverage in 1989
for women below 40 years) and 2014, and all births to women ages 41 to 51 in New Jersey between 2003 (two years after mandated IVF
coverage in 2001 for women below 46 years) from the birth certificate data. The running variable is women’s age. The placebo estimates
in New Jersey use data on all births to 35 to 45 years old women (an age window with no change in eligibility for IVF coverage) between
2003 (two years after mandated IVF coverage) and 2014. The included covariates are indicators for married, white, and college-educated
women. The bandwidth and degree of the fitted polynomial are selected using Calonico et al. (2020). Standard errors are clustered at
the age level and are presented in parentheses.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 4: Effects of IVF coverage generosity level on multiple births per hundred live
births, GSC model

All women Women 35 and older Women under 35 Number of cells

(1) (2) (3) (4) (5) (6)
A. All levels 0.10∗∗∗ 0.05∗∗∗ 0.18∗∗∗ 0.12∗∗ 0.05∗∗∗ 0.05 1,923

(0.01) (0.01) (0.06) (0.06) (0.01) (0.02)

Pre-mandate mean 1.13 1.13 1.55 1.55 1,09 1.09
(0.30) (0.30) (0.57) (0.57) (0.23) (0.23)

B. Level 0 0.02 0.03 -0.22 0.01 0.05 0.02 1,404
(0.05) (0.04) (0.17) (0.13) (0.07) (0.03)

Pre-mandate mean 1.05 1.05 1.43 1.43 1.02 1.02
(0.11) (0.11) (0.37) (0.37) (0.11) (0.11)

C. Level 1 -0.11∗ 0.08 -0.32∗ -0.24 -0.10∗ 0.07∗ 1,110
(0.06) (0.04) (0.15) (0.16) (0.05) (0.04)

Pre-mandate mean 0.96 0.96 1.39 1.39 0.93 0.93
(0.11) (0.11) (0.37) (0.37) (0.10) (0.10)

D. Level 2 0.16 0.16 0.23 0.15 0.02 0.24 900
(0.11) (0.13) (0.27) (0.27) (0.06) (0.11)

Pre-mandate mean 1.46 1.46 2.09 2.09 1.33 1.33
(0.47) (0.47) (0.87) (0.87) (0.34) (0.34)

E. Level 3 0.17∗∗∗ 0.09∗ 0.52∗∗∗ 0.52∗∗∗ 0.12∗∗∗ 0.00 1,036
(0.01) (0.03) (0.13) (0.13) (0.01) (0.03)

Pre-mandate mean 1.01 1.01 1.34 1.34 0.99 0.99
(0.08) (0.08) (0.37) (0.37) (0.07) (0.07)

F. Level 4 0.14∗∗∗ 0.17∗∗∗ 0.40∗∗ 0.31∗∗ 0.07∗∗ 0.12∗∗∗ 1,480
(0.03) (0.03) (0.17) (0.16) (0.03) (0.03)

Pre-mandate mean 1.26 1.26 1.67 1.67 1.20 1.20
(0.33) (0.33) (0.62) (0.62) (0.25) (0.25)

G. Level 5 0.42∗∗∗ 0.24∗∗∗ 0.87∗∗∗ 0.59∗∗ 0.27∗∗ 0.11 1,080
(0.09) (0.08) (0.35) (0.30) (0.13) (0.08)

Pre-mandate mean 1.04 1.04 1.27 1.27 1.02 1.02
(0.08) (0.08) (0.30) (0.14) (0.08) (0.08)

Covariates included No Yes No Yes No Yes
State and time fixed effects Yes Yes Yes Yes Yes Yes

Notes: This table presents the estimated average treatment effect on the treated from
the GSC model specified in Equation (2). Data are aggregated to the state-year cell
level. Included covariates in the model are mothers’ age, marital status, education, and
race; fathers’ race; infant’s sex; percentage of women of childbearing age; percentage of
college-educated women; female labor force participation rate; the percentage of employ-
ees working in big firms (employee > 500); percentage with private health insurance;
and real per capita income. Parametric bootstrapped standard errors estimated by 2,000
draws appear in parentheses. See Figure C.1 in Appendix C for graphical presentation
of this table.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 5: Effects of IVF coverage generosity level on the number of infants per thousand
live births, GSC model

All women Women 35 and older Women under 35 Number of cells

(1) (2) (3) (4) (5) (6)
A. All levels 1.06∗∗∗ 0.64∗∗∗ 1.64∗∗∗ 0.82∗∗ 0.52∗∗∗ 0.57∗∗∗ 1,923

(0.08) (0.07) (0.30) (0.42) (0.07) (0.12)

Pre-mandate mean 1,011.61 1,011.61 1,015.95 1,015.95 1,011.12 1,011.12
(3.25) (3.25) (6.22) (6.22) (2.51) (2.51)

B. Level 0 0.18 0.27 -2.78 0.12 0.52 0.23 1,404
(0.61) (0.46) (1.9) (1.60) (0.76) (0.42)

Pre-mandate mean 1,010.64 1,010.64 1,014.56 1,014.56 1,010.40 1,010.40
(1.22) (1.22) (3.85) (3.85) (1.15) (1.15)

C. Level 1 -1.25∗ 0.91∗∗∗ -3.68∗∗∗ -3.25∗ -1.11∗ 0.77∗ 1,110
(0.76) (0.42) (1.00) (1.26) (0.64) (0.43)

Pre-mandate mean 1,009.70 1,009.70 1,014.20 1,014.20 1,009.44 1,009.44
(1.12) (1.12) (3.71) (3.71) (1.07) (1.07)

D. Level 2 2.89 2.09∗ 4.30 2.09 1.53 2.39 900
(1.50) (1.29) (2.57) (2.62) (0.99) (1.18)

Pre-mandate mean 1,015.13 1,015.13 1,021.88 1,021.88 1,013.74 1,013.74
(5.07) (5.07) (9.41) (9.41) (3.70) (3.70)

E. Level 3 1.94∗∗∗ 0.68∗∗∗ 3.73∗∗ 3.82∗∗∗ 1.34∗∗∗ 0.42 1,036
(0.12) (0.16) (1.50) (0.65) (1.10) (0.20)

Pre-mandate mean 1,010.21 1,010.21 1,013.69 1,013.69 1,010.00 1,010.00
(0.78) (0.78) (3.85) (3.85) (0.76) (0.76)

F. Level 4 1.93∗∗∗ 1.66∗∗∗ 4.76∗∗∗ 3.43∗∗∗ 1.24∗∗∗ 1.31∗∗∗ 1,480
(0.26) (0.20) (0.71) (0.65) (0.20) (0.27)

Pre-mandate mean 1,013.07 1,013.07 1,017.40 1,017.40 1,012.40 1,012.40
(3.71) (3.71) (6.95) (6.95) (2.80) (2.80)

G. Level 5 4.60∗∗∗ 2.71∗∗∗ 10.04∗∗ 9.72∗∗∗ 2.31 1.64∗∗ 1,080
(1.04) (0.90) (3.23) (3.84) (1.57) (0.87)

Pre-mandate mean 1,010.55 1,010.55 1,012.90 1,012.90 1,010.37 1,010.37
(0.84) (0.84) (1.48) (3.41) (0.79) (0.82)

Covariates included No Yes No Yes No Yes
State and time fixed effects Yes Yes Yes Yes Yes Yes

Note: See notes for Table 4.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 6: Association between IVF coverage generosity level and patients’ IVF utilization behaviour, Mixed Effects model

All women Women 35 and older Women under 35

Total number Average # of transferred Share of cycles Average # of transferred Average # of transferred
of cycles per clinic embryos per cycle to women 35+ embryos per cycle embryos per cycle

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
All levels 34.88*** -0.02 0.03*** -0.05 0.02

(13.11) (0.05) (0.01) (0.06) (0.04)

Level 0 80.40** 0.07 -0.00 0.06 0.15
(33.78) (0.10) (0.03) (0.08) (0.10)

Level 1 -34.79 0.01 0.06 -0.03 0.06
(26.84) (0.39) (0.10) (0.41) (0.24)

Level 2 13.74 0.09*** 0.03*** 0.11*** 0.06**
(11.38) (0.02) (0.00) (0.03) (0.03)

Level 3 192.66*** 0.00 0.09*** 0.03 -0.07
(37.71) (0.06) (0.01) (0.05) (0.08)

Level 4 42.06*** -0.05* 0.03*** -0.10*** 0.02
(13.27) (0.03) (0.00) (0.04) (0.04)

Level 5 650.22*** -0.50*** 0.14*** -0.45*** -0.65***
(14.27) (0.04) (0.01) (0.04) (0.04)

Constant -372.10 -381.85* 4.32*** 4.29*** 0.44*** 0.44*** 4.42*** 4.37*** 4.35*** 4.32***
(230.14) (204.30) (0.52) (0.52) (0.10) (0.10) (0.51) (0.50) (0.59) (0.59)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

State and clinic random effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Covariates included Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
P-value of Ch2 stat 0.00 0.00 0.00 0.00 0.00

Number of observations 4576 4,576 3,821 3,821 4,574 4,574 3,822 3,822 4,562 4,562

Notes: This table presents the estimated association between the generosity of IVF coverage and patients’ utilization behavior using IVF
clinic data using the ME model specified in Equation (3). All estimates include year fixed effects and clinic random effects. Included
state-level covariates from the CPS are listed in Notes to Table 4. We also control for the number of IVF clinics in each state. Standard
errors are clustered at the state level and appear in parentheses. The Ch2 statistic is used to test the null hypothesis that the estimated
coefficients are all equal. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 7: Association between IVF coverage generosity level and adopted children per ten
thousand live births, Mixed Effects model

All women Women 35 and older Women under 35

(1) (2) (3) (4) (5) (6)
All levels 3.11 -11.83 -0.04

(6.79) (52.77) (1.23)

Level 0 9.72 170.11 0.17
(14.25) (136.52) (3.11)

Level 1 -29.76 -143.18 -5.36
(19.23) (208.76) (5.66)

Level 2 16.57*** 76.91** 1.33
(6.26) (39.23) (1.65)

Level 3 5.88 -146.50 -1.15
(24.27) (153.16) (3.12)

Level 4 -2.85 -65.27 0.92
(7.73) (55.73) (1.24)

Level 5 -2.73 -233.43*** -2.11
(7.59) (62.94) (1.75)

Constant 151.85 159.97 -53.39 -99.45 32.34 33.50
(134.27) (139.29) (1340.20) (1369.47) (39.12) (40.04)

Year fixed effects Yes Yes Yes Yes Yes Yes

State random effects Yes Yes Yes Yes Yes Yes

Covariates included Yes Yes Yes Yes Yes Yes
P-value of Ch2 stat 0.00 0.00 0.52
Observations 906 906 906 906 883 883

Note: This table presents the estimated association between the generosity of IVF cov-
erage and child adoption using adoption data and the ME model specified in Equation
(3). The data include children ages 0-6 adopted between 1994 to 2014. All estimated
effects include year fixed effects and state random effects. Included state-level covari-
ates from the CPS are listed in notes to Table 4. We also control for the number of
IVF clinics in each state. Robust standard errors appear in parentheses. The Ch2
statistic is used to test the null hypothesis that the estimated coefficients are all equal.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Figures

Figure 1: Multiple births per hundred live births by IVF coverage generosity level

(a) Women 35 and older
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(b) Women under 35
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Note: The sample includes all births from National Vital Statistics Detail Natality Data
from 1975–2014. Multiple births are defined as births that are not singletons.
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Figure 2: Multiple births per hundred live births by women’s age
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Figure 3: RDD plots of multiple births per hundred live births by women’s age
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(c) New Jersey
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(d) New Jersey (placebo)
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Note: This figure plots the multiple births per hundred live births by women’s age two
years after mandated IVF coverage in Connecticut (2007–2014), Rhode Island (1991–
2014), and New Jersey (2003–2014).
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Figure 4: Effects of IVF coverage generosity level on multiple births per hundred live
births, GSC model for all women

(a) All levels

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(c) Level 1
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(d) Level 2
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(e) Level 3
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(f) Level 4
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(g) Level 5
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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Note: This figure plots the estimated counter-factual outcome Y (0) and the treatment effect on the
treated for multiple births per hundred live births using the GSC model specified in Equation (2). The
sample includes all births in the US from 1975-2014 from the National Vital Statistics, aggregated by
state-year. The included covariates in the model are listed in the Notes to Table 4. The gray shade
shows the %95 confidence intervals for the estimated effects.
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Figure 5: Effects of IVF coverage generosity level on multiple births per hundred live
births, GSC model, women 35 and older

(a) All levels
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(b) Level 0
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(c) Level 1
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(d) Level 2
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(e) Level 3
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(f) Level 4
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(g) Level 5
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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Notes: See notes for Figure 4.
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Figure 6: Effects of IVF coverage generosity on multiple births per hundred live births,
GSC model, women under 35

(a) All levels

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(b) Level 0

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(c) Level 1
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(d) Level 2
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(e) Level 3
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(f) Level 4
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(g) Level 5
(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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Notes: See notes to Figure 4.
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Appendix

A Summary statistics

Table A.1: Summary statistics for Society for Assisted Reproductive Technology (SART) infertility clinic data, 1996-2010

Never mandated states (control group) Mandate to cover states (treatment group)
1996-2004 2005-2010 1996-2004 2005-2010

Total number of cycles 231,699 201,147 199,085 176,306

Average number of embryos transferred 3.25 2.45 3.18 2.47
for all women (0.01) (0.01) (0.03) (0.02)

Multiple births per hundred live births 34.87 30.95 33.48 28.92
for all women (0.36) (0.42) (0.45) (0.50)

Cycles for women 35 and older (%) 48.10 50.13 56.17 59.40

Average number of embryos transferred 3.39 2.64 3.30 2.66
for women 35 and older (0.02) (0.01) (0.02) (0.02)

Average number of embryos transferred 3.12 2.23 3.03 2.22
for women under 35 years (0.02) (0.01) (0.03) (0.02)

Total number of IVF clinics 326 255 118 94
Notes: Standard deviations appear in parentheses.
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Table A.2: Summary statistics for National Data Archive on Child Abuse and Neglect (NDACAN) adoption data, 1994-2015

Never mandated states (control group) Mandate to cover states (treatment group)
1994-2004 2005-2015 1994-2004 2005-2015

Number of adopted children 5.23 8.78 6.37 6.86
per ten thousand newborn infants

Number of adopted children 103,327 188,072 37,926 36,811

Number of newborn infants 19,736,577 21,411,844 5,955,365 5,362,502

Adopting women 35 and older (%) 79.31 79.99 85.21 82.95
(0.13) (0.09) (0.18) (0.19)

Mean age of adopting mothers 40.99 41.41 42.70 42.04
(0.02) (0.02) (0.04) (0.04)

Mean age of adopting fathers 43.04 43.55 45.27 44.52
(0.02) (0.01) (0.03) (0.03)

White adopting mothers (%) 62.20 69.47 38.90 53.76
(0.15) (0.10) (0.25) (0.25)

White adopting fathers (%) 55.05 59.71 32.26 44.53
(0.15) (0.11) (0.24) (0.25)

Mean age of adopted children 3.31 3.02 3.61 3.07
(0.01) (0.00) (0.01) (0.01)

White adopted children (%) 48.93 51.76 28.47 39.31
(0.15) (0.11) (0.23) (0.25)

Adopted boys (%) 50.89 51.52 50.79 51.49
(0.15) (0.11) (0.26) (0.25)

Note: Data include children age 0-6 adopted in the US. Standard deviations appear in parentheses.
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Table A.3: Summary statistics for Current Population Survey Annual Social and Economic Supplement (CPS)

Never mandated states (control group) Mandate to cover states (treatment group)
1975-1984 1985-1994 1995-2004 2005-2014 1975-1984 1985-1994 1995-2004 2005-2014

Women of child bearing age (18-49 years) (%) 38.66 39.38 38.12 34.78 38.34 39.53 38.20 35.11
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Female labor force participation rate (%) 61.45 69.31 73.03 71.21 62.54 70.45 74.16 72.08
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Employee in firms of +500 employee (%) 16.19 16.29 15.86 13.88 17.61 17.72 17.07 14.91
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Private health insurance (%) 78.23 76.24 74.80 69.55 81.72 79.94 76.89 73.74
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Real average per capita income (2007 USD) 25,076 29,958 35,033 36,093 26,400 31,624 37,576 39,161
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Note: The sample includes working age individuals (18 to 64 years). Standard deviations appear in parentheses.
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B Estimation procedure of a GSC model

Xu (2017) provides a procedure for estimating a Generalized Synthetic Control (GSC)

model specified in Equation (2) as:

yit = δitDit + X ′
itβ + λ′

ift + ϵit. (B.1)

The procedure consists of three main steps. The first step includes estimating an inter-

active fixed-effect model using the data only from the control group (i.e., setting Dit = 0

in Equation (B.1)). Assume that ft and λi are r-vectors where r denotes the number

of factors. Also assume that F = [f1, f2, ..., fT ] and Λcontrol = [λ1, λ2, ..., λcontrol] where

control denotes the number of states in the control group and T denotes the time periods

in the analysis. To identify β, F and Λcontrol however more constraints are required. Two

constraints are imposed. First, all factors are normalized, F̂ ′F̂

|T |
= Ir, where Ir denotes

the identity matrix. Second, loadings are orthogonal to each other, Λ̂′
controlΛ̂control = 0.

To obtain the estimated β̂, F̂ and Λ̂control then:

(β̂, F̂ , Λ̂control) = arg max
β̂,F̂ ,Λ̂control

∑
i∈control

(Yi − Xiβ̂ − F̂ λ̂i)′(Yi − Xiβ̂ − F̂ λ̂i), (B.2)

s.t. F̂ ′F̂

|T |
= Ir and Λ̂′

controlΛ̂control = 0.

The number of factors r is unknown and is estimated through a cross validation

process that minimizes the prediction error of the model. The estimation process starts

with a given r to obtain the corresponding β̂, F̂ and Λ̂control. For each pre-treatment

period s ∈ {1, 2, ..., T0} (T0 denotes the number of pre-treatment periods), we hold back

data of all treated states at time s. We then run an OLS regression using the rest of

the pre-treatment data to obtain factor loadings for each treated unit i, λ̂i,−s. We next

predict the treated outcome at time s as ŷis(0) = X ′
isβ̂ + λ̂i,−sf̂s.1

We define the prediction error as eis = yis(0) − ŷis(0). The Mean Square Prediction
1yit(1) and yit(0) denote the potential outcomes for state i at time t when respectively Dit = 1

(treated) and Dit = 0 (not treated).
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Error (MSPE) for a given r is defined as:

MSPE(r) =
T0∑

s=1

∑
i∈T

e2
is

T0
(B.3)

This process is repeated for different values of r (we try r ∈ {1, 2, ..., 5}). Then, r∗

corresponding to the smallest prediction error is chosen.

The factor loadings for the treated states are estimated in the second step. This is

done by minimizing the MSPE of the predicted treated outcome in pretreatment periods:

λ̂i = arg max
λ̂i

(Y 0
i − X0

i β̂ − F̂ 0λ̂i)′(Y 0
i − X0

i β̂ − F̂ 0λ̂i) (B.4)

where ”0” superscripts denote the pre-treatment time periods and β̂ and F̂ 0 are estimated

from the first step.

Finally, the third step estimates the treated counterfactual based on β̂, F̂ and λ̂i.

That is:

ŷit(0) = X ′
itβ̂ + λ̂′

if̂i for i ∈ Treated, t > T0 (B.5)

The estimated Average Treatment effect on Treated at time t, ATTt then is:

ÂTT t = 1
|Treated|

∑
i∈T reated

[yit(1) − ŷit(0)] for t > T0 (B.6)
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C Graphical presentation and statistical significance

tests of GSC estimates

Figure C.1: GSC estimates for multiple births per hundred live births

(a) All women
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(b) Women 35 years and older
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(c) Women under 35 years old
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Note: This figure plots the estimated effects from the generosity level of coverage on the
incidence of multiple births per hundred live births using the GSC model specified in
Equation (2) presented in Table 4. All estimates include covariates specified in notes to
Table 4.
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Table C.1: Statistical significance tests of GSC estimates of the effects of generosity level
of IVF coverage

(a) Number of multiple births per hundred live births

All women Women 35 and older Women under 35
Level 0 vs Level 1 0.00 1.00 0.00

Level 1 vs Level 2 0.00 0.00 0.00

Level 2 vs Level 3 1.00 0.00 1.00

Level 3 vs Level 4 0.00 1.00 0.00

Level 4 vs Level 5 0.00 0.00 1.00

(b) Number of infants per thousand live births

All women Women 35 and older Women under 35
Level 0 vs Level 1 0.00 1.00 0.00

Level 1 vs Level 2 0.00 0.00 0.00

Level 2 vs Level 3 1.00 0.00 1.00

Level 3 vs Level 4 0.00 0.90 0.00

Level 4 vs Level 5 0.00 0.00 1.00
Note: This table presents the 95% p-values of the two-sample Welch statistic testing
H0 : δLeveli = δLeveli+1 versus H1 : δLeveli < δLeveli+1 for estimates with covariates presented
in Table 4 and Table 5, respectively. The tests assume that the population distributions
are normal, but have unequal variances.
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D Other dimensions of generosity and state by state

GSC estimates

Table D.1: Effects of IVF coverage on multiple births, stratified by other dimensions of
mandated coverage

Dimension With Without p-value of
dimension dimension statistical significance test

(1) (2) (3)
Long min infertility time 0.11 0.19∗∗∗ 0.00

(0.12) (0.07)

Religious exemption 0.17∗∗ 0.10∗ 1.00
(0.08) (0.05)

Firm size exemption 0.29∗∗∗ 0.07 1.00
(0.09) (0.07)

Marital status restriction 0.08 0.21∗∗∗ 0.00
(0.04) (0.07)

Age restriction 0.21∗∗∗ 0.08∗ 1.00
(0.09) (0.04)

Restricted embryo numbers 0.16 0.27∗∗∗ 0.00
(0.13) (0.09)

Lifetime cap -0.02 0.27∗∗∗ 0.00
(0.80) (0.08)

Note: This table presents the GSC estimated effects of IVF coverage (the presence of any
mandate) on multiple births per hundred live births, stratified by the other dimensions
of mandated coverage presented in Table 1. Each coefficient is from a separate regres-
sion. Column 1 presents the estimates from comparing mandate to cover states whose
mandate includes a specific dimension to never mandated states. Column 2 presents the
estimates from comparing mandate to cover states whose mandate does not include a
specific dimension to never mandated states. Column 3 presents the 95% p-value of the
two-sample Welch statistic testing H0 : δwith = δwithout against H1 : δwith < δwithout. The
tests assume that the population distributions are normal, but have unequal variances.
The significant p-values denote the dimensions of mandated coverage that might affect
the incidence of multiple births. For more details on the GSC estimates, see notes to
Table 4.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Figure D.1: GSC estimates for multiple births per hundred live births

(a) All women
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(b) Women 35 years and older
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(c) Women under 35 years old
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Note: This figure plots the estimated effects from the generosity level of coverage on
the incidence of multiple births per hundred live births using the GSC model specified
in Equation (2). We compare each mandated state with never mandated states. All
estimates include state and time fixed effects and covariates specified in notes to Table 4.
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E DD and DDD estimates

To investigate robustness of our findings from the GSC framework, we estimate the

effects from mandated IVF coverage on incidence of multiple births using DD and DDD

frameworks. We estimate an equation of this form for our DD model:

yit = α0 + α1(Levelit × Postt) + α2Levelit + λi + λt + ϵit (E.1)

where i and t denote state and time, respectively. yit denotes the outcome variables:

the multiple birth rate per hundred live births and the number of infants per thousand

live births. Levelit includes indicators that denote the generosity level of the mandated

coverage. It is set to zero for the never-mandated states. Postit is a dummy variable

switching on two years after the mandated coverage is enacted. It is set to zero for

never-mandated states. The vector Xit includes the same set of state-level time-varying

covariates used in the GSC analysis. λi and λt are state and time fixed effects. ϵit

captures any remaining unobserved factors affecting the outcome variable. The coefficient

of interest is α1, which captures the effect of mandated coverage’s generosity on the

incidence of multiple births.

We estimate the following equation in our DDD model:

yita =α0 + α1(Levelit × Plus35a × Postit) + α2(Levelit × Plus35a)

+ α3(Postit × Plus35a) + α4(Levelit × Postit) + α5X
′
ita

+ λi + λt + λa + ϵita

(E.2)

where a denotes women’s age. Plus35a is a dummy indicating women 35 years and older.

λa is the age fixed effects. The coefficient of interest is α1 which captures the effect of the

number of covered cycles on mothers of 35 years and older in mandated states relative to

mothers younger than 35 years.

We aggregate the birth data into state-year and state-year-age cells for estimating the

DD and DDD models, respectively. The estimation results are presented in Table E.1

and Table ??. The estimates in each table’s first and second columns show the replicated
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estimates from Buckles (2013) including the states with mandates in the 2000s in our

treatment group and using a longer pre-mandate period.2 Our estimates are much larger

in magnitude and are statistically significant. Our estimated effects from any mandate

on multiple birth rate and the number of infants per thousand live births are respectively

0.10 (p-value < 0.001) and 1.07 (p-value < 0.001) versus 0.02 (p-value > 0.10) and 0.28

(p-value > 0.10).

Overall the estimated effects from DDD and DD models confirm findings from our

GSC framework, although the estimated effects are relatively larger than the GSC esti-

mates. These findings suggest that more generous coverage is associated with an increase

in the incidence of multiple births. The estimated effects are larger for older women than

those for younger women.

Figure E.1 plots the estimated weight of each mandated state over the years, which are

the residuals from a regression of a mandated coverage indicator on state and year fixed

effects, scaled by the sum of the squared residuals across a pooled sample of mandated

and never mandated states (see de Chaisemartin and D’Haultfoeuille (2020) for more

details). None of the treated states has a negative weight, suggesting that contamination

due to staggered adoption of mandated coverage is not a threat to our estimates.

2Buckles (2013) uses data from 1980-2002 and includes the states with mandates in the 2000s (Con-
necticut (2005) and New Jersey (2001)) in their control group. We use data from 1974-2014 and include
states with mandates in the 2000s in our treatment group.
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Table E.1: Effects of IVF coverage generosity level on multiple births per hundred live births, DD and DDD models

Difference-in-Differences Difference-in-Difference-in-Differences

All women Women 35 and older Women under 35

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
All levels 0.10* 0.07*** 0.17 0.12 0.06 0.05*** 0.49*** 0.25***

(0.05) (0.02) (0.12) (0.08) (0.04) (0.02) (0.09) (0.09)

Level 0 0.01 0.01 -0.04 -0.03 0.01 0.01 0.45*** 0.23**
(0.06) (0.03) (0.15) (0.10) (0.04) (0.03) (0.12) (0.11)

Level 1 -0.11*** -0.02 -0.30* -0.30** -0.10** -0.01 0.22 -0.13
(0.02) (0.03) (0.16) (0.11) (0.04) (0.02) (0.22) (0.13)

Level 2 0.15*** 0.17*** 0.39*** 0.31*** 0.04*** 0.11*** 0.64*** 0.40***
(0.01) (0.03) (0.03) (0.06) (0.01) (0.02) (0.00) (0.04)

Level 3 0.20*** 0.06 0.37*** 0.31*** 0.14*** 0.05 0.58*** 0.39***
(0.03) (0.05) (0.03) (0.10) (0.02) (0.04) (0.06) (0.08)

Level 4 0.23** 0.20** 0.45*** 0.33*** 0.13** 0.16*** 0.78*** 0.54***
(0.10) (0.08) (0.16) (0.10) (0.06) (0.05) (0.06) (0.03)

Level 5 0.42*** 0.19*** 0.84*** 0.62*** 0.27*** 0.12*** 0.94*** 0.73***
(0.02) (0.04) (0.03) (0.10) (0.01) (0.04) (0.00) (0.04)

Constant 1.00*** -3.23 0.99*** -1.75 1.34*** -1.45 1.33*** 4.80 1.00*** -1.93 1.00*** -0.90 0.84*** 7.14 0.84*** 15.10***
(0.02) (2.22) (0.01) (2.51) (0.06) (7.54) (0.06) (7.60) (0.01) (2.06) (0.01) (2.43) (0.04) (5.58) (0.04) (3.42)

Time fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

State fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Covariates included No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes
P-value of Ch2 stat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Number of cells 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,768 3,616 3,276 3,616 3,276

Note: This table presents the DD, and DDD estimates from the effects of the generosity level of IVF coverage on multiple births per hundred
live births. Data are aggregated into state-year cells for DD analysis and state-year-age cells for DDD analysis. All models include state and
year fixed effects. Included covariates listed in notes for Table 4. Standard errors are clustered at the state level and appear in parentheses.
The Ch2 statistic is used to test the null hypothesis that the estimated coefficients are all equal.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table E.2: Estimated effects from a DD model replicating Buckles (2013)

(a) Multiple births per hundred live births

All women Women 35 and older Women under 35
(1) (2) (3) (4) (5) (6)

All levels 0.05 0.03 0.07 0.02 0.03 0.03*
(0.06) (0.02) (0.12) (0.07) (0.03) (0.01)

Time fixed effects Yes Yes Yes Yes Yes Yes

State fixed effects Yes Yes Yes Yes Yes Yes

Covariates included No Yes No Yes No Yes
Observations 1,059 1,059 1,065 1,065 1,065 1,065

(b) Number of infants per thousand live birth

All women Women 35 and older Women under 35
(1) (2) (3) (4) (5) (6)

All levels 0.63 0.34 0.86 0.27 0.37 0.31*
(0.64) (0.22) (1.27) (0.78) (0.39) (0.15)

Time fixed effects Yes Yes Yes Yes Yes Yes

State fixed effects Yes Yes Yes Yes Yes Yes

Covariates included No Yes No Yes No Yes
Observations 1,059 1,059 1,065 1,065 1,065 1,065

Notes: This table replicates estimates from Buckles (2013). The study sample includes birth
certificate data from 1980-2002. The estimates compares the mandated states with never
mandated states using the the DD model specified in E.1. Standard errors are clustered at the
state level and appear in parentheses.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Figure E.1: Weights used in a Difference-in-Differences (DD) model by state and year
fixed effects
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Note: This figure characterizes the weights used in estimating a DD model with time
and state fixed effects from the impact of mandated IVF coverage on multiple births per
hundred live births and number of infants per thousand live births (identical weights for
both outcome variables). The weights are the residuals from a regression of treatment on
state and year fixed effects, scaled by the sum of the squared residuals across a pooled
sample of mandated and never mandated states. See de Chaisemartin and D’Haultfoeuille
(2020) for discussion.
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